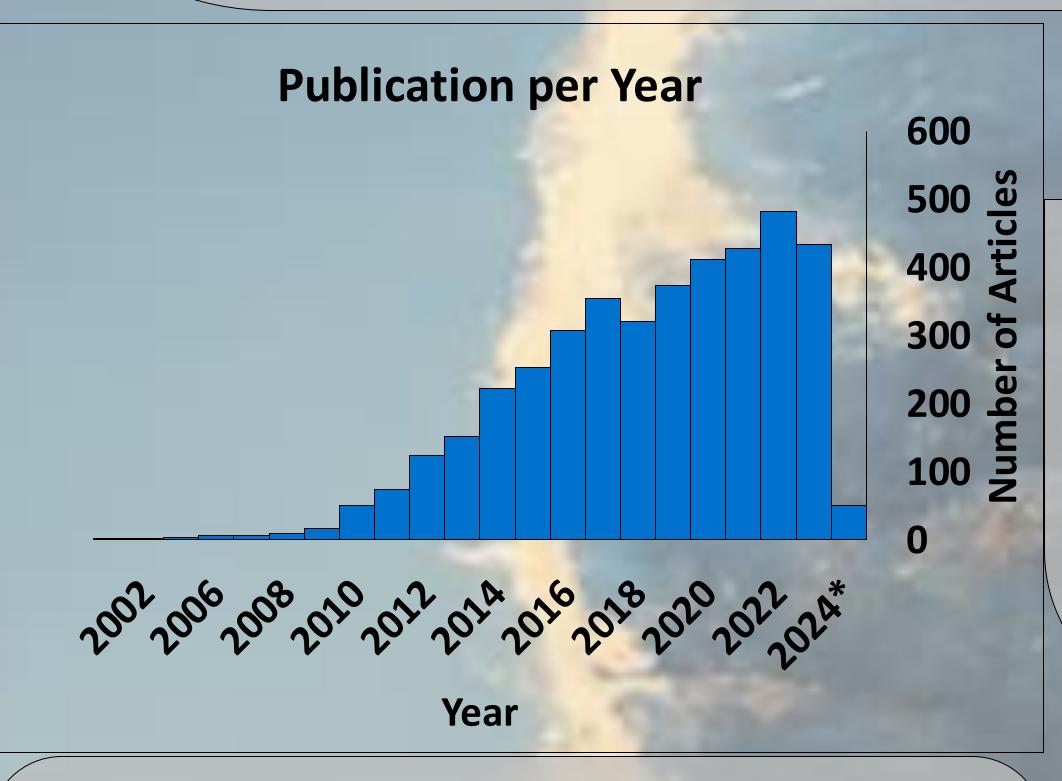


QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES


CO, Capture from Commercial Flue Gas Process Streams;

Michael Sweeney, Prof. John Holbrey, Dr. Leila Moura

msweeney22@qub.ac.uk, QUILL Research Centre, Queen's University Belfast

Interactive Database

Ionic liquids (ILs) for the capture of carbon dioxide (CO₂) has become an increasing studied topic. With this database we aim to have an up-to-date compilation of the available chemisorption data for CO₂ capture. With an extensive delve into the available literature, ILs have been incorporated into many technologies including application in membrane separation, amine scrubber blends, porous liquids, deep eutectic solvent (DES) and their capabilities as CO₂ physisorbent but this database will primarily focus on their CO₂ chemisorption capabilities.

Increasing area of research totalling 4,084 papers, 600 papers for further screening est. 200 papers to be added with multiple ILs,

*Web of Science search for 'lonic Liquids for CO2 Capture' as of March 2024

CO₂ in flue gas

The amount of CO_2 in flue gas varies depending on the initial process. For this project we will be concentrating on flue gas from oil refinery process streams with a typical amount of CO_2 in flue gas around 4%. The main component is N_2 along with water vapour, many impurities (SO_x & NO_x) have already been removed.

Current Technology

The industrial standard currently used for CO₂ capture are amine scrubbers most typically 30 wt% blend of monoethanolamine (MEA) and water. ILs and other amine additives (methyldiethanolamine (MDEA) & piperazine (PZ) have been blended into the system to alleviate some of the drawbacks namely lowering the energy required for release of the captured CO₂. However these amine still susceptible to degrade into corrosive by-product hence the continued effort to find viable alternatives

Database Extract

Paper #	Ref.	Cation •	Anion	M _w (g/mol)	Water Content (wt%)	Pressure (mbar)	Absorb. Temp. (K)	CO ₂ mol/mol absorbent	CO ₂ mol/kg absorbent	CO ₂ g/kg absorbent	Mole Fraction	Vis. Pre CO ₂ (mPa.s)	Vis. Post CO ₂ (mPa.s)	Desorb. Temp. (K)
37	а	[DBUH]	[lm]	220.32	N/A	1000	313.8	0.68	3.09	154.00	0.40	18	N/A	N/A
42	b	[DBUH]	[2-Etlm]	248.38	N/A	1000	313.0	0.50	2.01	88.57	0.33	N/A	N/A	N/A

This interactive database aims to capture and correlate important parameters that influence the capacity of CO2 capture and industrial application; operating temperatures, pressure, viscosity. The presence of water is an important consideration to industrial application. Title and DOI also included in the database but exempt from the extract. Using excel functions able to determine different parameters with data reported. When only graphs are presented in papers authors are contacted via email for the numerical data.

References: a) Sep. Pur. Tech. 263 (2021) 118417 b) ACS Sustainable Chem. Eng. 2017, 5, 8192–8198

Structural Database Extract

Standard Abbreviation	Paper Abbreviation	Name	Structure	Keywords	Cation/ Anion	M _w (g/mol)	Mentioned in Entries	Ent	ry#
[OAc]	[acetate], [OAc]	Acetate	0 (=)	Oxygen	Α	59.04	26, 58	26	58
[lm]	[lm]	Imidazolate		5 membered ring, nitrogen	Α	67.07	17, 37, 42	17	37
[DBUH]	[DBUH]	8- diazabicyclo[5.4.0]undec- 7-ene	H H N N	Bicyclic, 5 & 7 membered ring, nitrogen	C	153.25	37, 58, 42	37	58
[2-Etlm]	[2-Etlm]	2-ethyl- imidazolate		Substituted imidazole ring, nitrogen	Α	95.13	37	37	

We have designed and compiled an interactive structural database to enable us to spot trends in reactivity among chemisorbent ILs with the further goal of designing novel ILs for chemisorbent CO₂ capture of flue gas. This database has the potential to offer AI valuable insights into advancements in carbon capture

Funded by CAST Award in Partnership with Chevron & Department of Economy NI

